Энергосбережение в системах горячего водоснабжения

Энергосбережение в системах горячего водоснабжения


Бесплатная юридическая консультация:

1. Всю область изменения параметров хладона в конденсаторе разбивают на три зоны:

— зону охлаждения перегретых паров хладона до состояния насыщения;

— зону конденсации насыщенных паров хладона;

Оглавление:

— зону переохлаждения конденсата.

Зоной переохлаждения конденсата, как правило, пренебрегают.


Бесплатная юридическая консультация:

2. Схема движения хладона и воздуха в конденсаторе перекрестная. В межтрубном пространстве происходит интенсивное перемешивание воздуха. Поэтому его температуру на выходе из конденсатора можно считать во всех точках сечения канала практически одинаковой.

3. Задаются температурой воздуха на выходе из конденсатора Т 11 2 и выполняют расчет первой зоны.

Расчет первой зоны

3.1. Рассчитывают средние (среднеарифметические) температуры теплоносителей в зоне.

3.2. Используя таблицы или интерполяционные формулы, определяют теплофизические паров хладона и воздуха при их средних температурах.


Бесплатная юридическая консультация:

3.3. Задаются скороcтью парообразного хладона в трубах (порядка 3 м/c) и рассчитывают число Рейнольдса.

3.4. Убедившись в том, что режим течения паров хладона турбулентный, выбирают соответствующую формулу и рассчитывают коэффициент теплоотдачи хладона.

3.5. Задаются скоростью (около 6 м/ с) и рассчитывают число Рейнольдса для воздуха.

3.6. Выбирают соответствующую формулу и находят коэффициент теплоотдачи от стенки трубы к воздуху.

3.7. Рассчитывают эффективность (КПД) ребра и оребренной поверхности, коэффициент теплопередачи отнесенный к гладкой (внутренней) поверхности трубы.


Бесплатная юридическая консультация:

3.8. Средний температурный напор между теплоносителями для первой зоны.

3.9. Тепловую нагрузку первой зоны.

3.10. Поверхность теплообмена с внутренней стороны труб.

4. Переходят к расчету второй зоны

Расчет второй зоны


Бесплатная юридическая консультация:

4.1. Принимают во внимание, что во второй зоне коэффициент теплоотдачи со стороны воздуха и эффективность (КПД) оребренной поверхности такие же, как в первой зоне.

4.2. По уравнению теплового баланса для второй зоны рассчитывают ее тепловую нагрузку.

4.3. Определяют средний температурный напор.

4.4. Коэффициент теплоотдачи от конденсирующегося хладона к стенке.

Поскольку величина плотности теплового потока q или температура стенки трубы неизвестны, решение осуществляют методом последовательных приближений. Для этого можно задаться, например, коэффициентом теплоотдачи при конденсации α1= 2500 Вт/(м 2 К), рассчитать коэффициент теплопередачи, отнесенный к внутренней поверхности трубы. Зная средний температурный напор, рассчитать плотность теплового потока через стенку трубы и по зависимости коэффициента теплоотдачи хладона от плотности теплового потока – уточненное значение коэффициента теплоотдачи. Последнее сравнивают с ранее принятым. В случае их существенного расхождения расчет повторяют до тех пор, пока это расхождение не станет пренебрежимо малым. Можно задаваться не плотностью теплового потока, а температурой стенки. Но тогда используют зависимость коэффициента теплоотдачи при конденсации паров хладона от разности температур хладона и стенки.

4.5. Рассчитывают коэффициент теплопередачи.


Бесплатная юридическая консультация:

4.6. По уравнению теплопередачи рассчитывают площадь поверхности теплообмена.

4.7. По уравнению неразрывности и геометрическим соотношениям линейных размеров, проходных сечений и площади поверхности теплообмена определяют рабочую длину, количество труб в продольном и поперечном рядах пучка.

4.8. Рассчитывают живые сечения каналов для прохода паров хладона и воздуха в конденсаторе и по уравнениям неразрывности вычисляют значения их скоростей. При существенном (более 5 %) отличии полученных значений скоростей от ранее принятых, расчет повторяют.

Ответ: Площадь поверхности теплообмена S = S1 + S2 = 4,0 м 2 .

Рабочая длина труб L = 0,5 м.

Количество труб в пучке n = 44.


Бесплатная юридическая консультация:

Количество труб в поперечном ряду пучка z1 = 22.

Количество рядов труб по ходу воздуха z2 = 2.

Количество труб, включенных параллельно,

в одном ходе хладона n1 = 3.

Источник: http://studfiles.net/preview//page:5/

Энергосбережение при водоснабжении жилых зданий

В. И. Ливчак, начальник отдела Энергоэффективности строительства Мосгосэкспертизы, вице-президент НП «АВОК»

Бесплатная юридическая консультация:

В тепловом балансе современных жилых зданий с повышенной теплозащитой наружных ограждений возрастает доля расхода тепла на горячее водоснабжение, достигая для муниципальных зданий потребности тепла на отопление в годовом исчислении. Это свидетельствует об актуальности и значимости задачи энергосбережения при водоснабжении зданий.

По величине удельного на 1 м 2 общей площади расхода тепла на горячее водоснабжение Россия почти в 4 раза превышает развитые страны Западной Европы. Это объясняется как более высокой плотностью заселения квартир (на одного жителя в России приходится в среднем в 2 раза меньше общей площади, чем на Западе), так и излишним расходованием воды, вызванным нарушениями в ее подаче и бесконтрольностью потребления.

По данным выполненных МНИИТЭП более 25 лет назад комплексных исследований работы ЦТП, через которые продолжается теплоснабжение жилых микрорайонов и сейчас, системы горячего водоснабжения в ряде случаев работают неудовлетворительно, не обеспечивая бесперебойного снабжения потребителей горячей водой нужной температуры, вследствие заниженной поверхности нагрева подогревателей второй ступени, недопоступления в требуемом количестве греющего теплоносителя, разрегулировки системы распределения циркуляции, сохранения большой циркуляции в часы максимального водоразбора и повышенного сопротивления водонагревателей.

С того времени устранили причину резкого снижения теплосъема в скоростных кожухотрубных теплообменниках, установив новую эффективную систему опирания трубного пучка и повысив теплообмен за счет применения профилированных трубок.

Реализация в типовых проектах смешанной схемы присоединения водонагревателей горячего водоснабжения с ограничением максимального расхода сетевой воды на вводе и авторегулированием подачи тепла на отопление позволила обеспечить приоритетность поступления теплоносителя на горячее водоснабжение (используя аккумулирующую способность зданий при переменном режиме работы отопления) и тем самым стабильное поддержание заданной температуры горячей воды на выходе из водонагревателей независимо от уровня водоразбора.


Бесплатная юридическая консультация:

Устранение колебаний в температуре горячей воды и увеличения ее выше 60°С за счет применения электронной системы авторегулирования снизило зарастание водонагревателей коррозионными отложениями и, соответственно, их сопротивление движению воды.

Однако вопросы разрегулировки систем горячего водоснабжения и излишней циркуляции остаются актуальными и сегодня, особенно при реконструкции существующих систем.

В условиях расчета за расходуемую горячую воду по водосчетчикам нарушения в циркуляции приведут к значительной переплате, т. к. недостаточная циркуляция вызовет слив воды до достижения воды нужной температуры, а при постоянно недостаточной температуре горячей воды – к сокращению подмешивания холодной воды и тем самым к увеличению потребления горячей воды, а вместе с ней и расхода тепла на горячее водоснабжение, поскольку последний получается умножением измеренного количества воды на постоянный расчетный перепад температур.

Современные централизованные системы горячего водоснабжения от ЦТП представляют собой разветвленные многокольцевые системы, требующие квалифицированного проектирования. На практике в их проектировании допускались серьезные ошибки. Не учитывались требования для обеспечения равномерной циркуляции в сети, заключающиеся в соблюдении определенного соотношения между сопротивлениями отдельных ответвлений и разводящих трубопроводов. В результате интенсивная циркуляция осуществлялась через ближайшие стояки; в удаленных стояках и секционных узлах она была меньше или отсутствовала совсем, вследствие чего в водоразборные краны вода поступала охлажденной.

На практике с целью доведения циркуляции до дальних стояков предусматривалась установка более мощного циркуляционного насоса. При этом циркуляционный расход приближался по величине к расчетному секундному расходу на водоразбор. Это мероприятие приводит только к отрицательному эффекту. Вследствие еще большей перегрузки подающего трубопровода и водоподогревателя второй ступени резко увеличиваются потери давления и возникают перебои в подаче воды на верхние этажи. Это влечет за собой установку более мощных высоконапорных насосов хозяйственного водопровода, что приводит к значительному росту капитальных затрат и перерасходу электроэнергии на перекачку.


Бесплатная юридическая консультация:

Учитывая, что потери давления в системе горячего водоснабжения из-за водонагревателей больше, чем в системе холодного водоснабжения, а давление в них создается одной и той же насосной установкой, вышеперечисленные мероприятия могут быть заменены более экономичным и рациональным инженерным решением – созданием дополнительной подкачивающей установки в системе горячего водоснабжения. Для этой цели могут быть использованы циркуляционные насосы путем перестановки их на подающий трубопровод (до или после водонагревателя второй ступени).

При такой схеме установки насосы работают как циркуляционно-повысительные. В циркуляционном режиме насос работает как циркуляционный, не нарушая принятого распределения расхода воды, а при водоразборе он становится циркуляционно-повысительным, компенсируя своим напором повышенные сопротивления подогревателей и трубопроводов и увеличивая давление в системе. В большинстве существующих ЦТП перестановку циркуляционных насосов можно выполнить без замены насосов в связи с тем, что последние, как правило, обеспечивают пропуск расчетного секундного расхода воды на водоразбор. В сравнении с общепринятой схемой такое решение позволяет сократить расчетный напор хозяйственных насосов и уменьшить период их использования.

Учитывая переменный режим водопотребления, а также то, что в часы максимального водоразбора наблюдается падение давления в городском водопроводе (из-за увеличения потерь давления в трубопроводах), целесообразно хозяйственные подкачивающие насосы устанавливать с регулируемым числом оборотов двигателя. Регулирование выполняется за счет поддержания заданного давления после первой ступени водонагревателей горячего водоснабжения, принимая изменяющееся сопротивление водонагревателя при прохождении через него воды на горячее водоснабжение за аналог изменения потерь давления в трубопроводах холодной воды до последнего водоразборного крана. Как показывает практика, при этом расход электроэнергии на перекачку сокращается более чем в 2 раза по сравнению с работой насоса в режиме максимального давления и создания необходимого напора регулирующим клапаном.

Регулирование числа оборотов циркуляционно-подкачивающих насосов проводить не следует, т. к. они работают в постоянном режиме – по мере сокращения водоразбора увеличивается объем циркуляции.

Для снижения разрегулировки потокораспределения циркуляции необходимо повысить гидравлическую устойчивость системы горячего водоснабжения. Это достигается увеличением сопротивления стояков системы, объединяя все стояки одной секции дома в единый секционный узел с одним циркуляционным стояком вместо распростаненного решения с самостоятельным стояком на каждый водоразборный стояк. При этом к водоразборному стояку подключаются полотенцесушители по проточной схеме, и все стояки, обслуживающие квартиры одной секции, в верхней части объединяются перемычками в один узел, от которого отводится один циркуляционный стояк малого диаметра.


Бесплатная юридическая консультация:

Далее даже при обеспечении минимально необходимого давления у последнего водоразборного крана за счет описанных выше решений установки циркуляционных насосов по циркуляционно-повысительной схеме и регулирования числа оборотов хозяйственных подкачивающих насосов, остается разный уровень давлений у водоразборных кранов, расположенных на разных этажах из-за различия гидростатического давления. Для устранения этого системы водоснабжения разбивают на зоны, и, кроме того, на подводках холодной и горячей воды в каждую квартиру устанавливают самостоятельные квартирные регуляторы давления, снижающие при протекании через них воды давление в нижних этажах до уровня верхнего этажа.

Поддержание давления воды перед каждым водоразборным краном на минимально необходимом уровне – очень важное мероприятие с точки зрения сокращения потерь воды, а для горячего водоснабжения и теплопотребления – снижается расход воды при изливе и утечки через арматуру. По данным МНИИТЭП, подтвержденным позднее Академией коммунального хозяйства, при стабилизации давления в системе водоснабжения среднесуточный расход горячей воды на одного жителя соответствует норме СНиП – 105–110 л/(чел.•сут.). С повышением давления в системе выше минимально необходимого расход горячей воды резко возрастает, достигая, по данным Мосводоканала, 150–180 л/(чел.•сут.).

Дальнейшее сокращение водопотребления зависит от жителей – это мытье посуды и станков для бритья в непроточной воде, а бывают случаи, что хозяйка открыла воду и ушла по своим делам; это закрывание крана при намыливании и другие индивидуальные для каждого жителя мероприятия. Однако это будет выполняться только тогда, когда жители будут заинтересованы в сокращении водопотребления, т. е. когда будут платить не по норме, а по водосчетчику.

В соответствии с московскими территориальными нормами по энергосбережению МГСН 2.01-99 во всех строящихся зданиях должны быть установлены квартирные водосчетчики на холодную и горячую воду (в проектах они есть). Разработана и действует система автоматического считывания показаний этих водосчетчиков вместе с квартирными электросчетчиками («ЭНЭЛЭКО»), но по-прежнему расчет с жителями ведется по нормативам, которые по расходу воды в 1,5 раза превышают норму СНиП.

НП «АВОК» вместе с УТЭХ Правительства Москвы разработал методику распределения объемов и стоимости поставленной тепловой энергии между потребителями, где отражены вопросы распределения расхода тепла на горячее водоснабжение между жителями дома при подключении этого дома к ИТП или ЦТП, в которых установлены приборы учета тепла на тепловой сети. Внедрение этой методики будет стимулировать энергосбережение на всем пути производства, транспорта и потребления тепловой энергии и водных ресурсов.


Бесплатная юридическая консультация:

Источник: http://www.abok.ru/for_spec/articles.php?nid=1642

Энергосбережение в системах горячего водоснабжения и отопления

Оптимизация работы предприятия – задача, которую необходимо решать на различных уровнях. Для снижения расходов на потребляемые ресурсы возможно внедрить энергосбережение в системах горячего водоснабжения и отопления. Переход на альтернативные источники в данном случае влияет на решение проблемы лишь косвенно. Заключение договоров о поставке с более выгодным партнером относится к категории глобальных изменений, которые, несомненно, принесут пользу, но существуют и другие методы повышения энергоэффективности. Их можно реализовать на каждом предприятии как с минимальными капиталовложениями, окупающимися за несколько месяцев, так и с более существенными, требующими длительного срока исполнения, но характеризующимися повышенной отдачей.

Энергосбережение систем отопления начинается с малого:

  1. Простое соблюдение правил эксплуатации – регулярная плановая проверка исправности всех узлов агрегатов и поддержание их в стандартном состоянии позволяет снизить расходы на 20% по сравнению с предприятиями, где используются поврежденные котлы, фильтры, золоуловители и другое оборудование.
  2. Замена устаревших насосных уплотнителей из асбестографита на тефлоновые окупается менее чем за полгода, так как срок службы детали из нового материала в 6 раз выше.
  3. Трубы и арматура могут заменяться постепенно для того чтобы в конечном результате снизить общий расход еще на 10%.

Вышеперечисленные мероприятия относятся к самым бюджетным и простым для реализации, но при этом приносят существенную пользу.

Энергосбережение в системах горячего водоснабжения для предприятий может иметь и более серьезный характер:


Бесплатная юридическая консультация:

  1. Экономичная эксплуатация насосов. Потери при передаче устраняются заменой редукторных или клиноременных аппаратов на те модели, у которых рабочее колесо размещено на валу привода. Замена насосов с малой производительностью и тех, что уже не соответствуют заявленным гидравлическим характеристикам, – не единственный выход. Увеличение КПД реализует инсталляция новых уплотнителей и балансировка рабочих колес. Установка автоматизирующих работу устройств, позволяющих достигать предельной загрузки и регулировать частоту вращения рабочего колеса.
  2. Полимерные трубы большего диаметра вместе с изменением конструкции инженерных коммуникаций позволяют снизить потери от трения воды на 75% и продлить срок эксплуатации в три раза. Гладкость внутренних стенок влияет на коэффициент гидравлического сопротивления. Это значит для перекачки того же объема жидкости требуется на четверть меньше мощности.
  3. Очистка труб и агрегатов от отложений – достаточно простая задача, которая может быть выполнена как механическим, так и химическим способом, но требующая остановки производственного процесса. Для сетей отопления и горячего водоснабжения правильным решением будет установка специального агрегата с очищающими присадками, которые не влияют на жесткость, но не позволяют осадку накапливаться.
  4. Локализация и устранение утечек. Акустическое и инфракрасное оборудование позволяет найти незапланированный расход, однако оно достаточно дорогостоящее, поэтому лучше установить счетчик на входе в здание и наблюдать за стандартным расходом. Таким же образом можно контролировать водный баланс предприятия и определить, какой именно узел потребляет чрезмерные объемы ресурсов.

Максимальное энергосбережение систем теплоснабжения достигается после установки автоматической станции управления, замены всего устаревшего оборудования и материального стимулирования сотрудников с целью заручиться их поддержкой в реализации мероприятий по увеличению экономии. Каждой компании, вне зависимости от рода ее деятельности, будет полезно стать посетителем или экспонентом отраслевых стимулирующих мероприятий, например, московской выставки «Электро», которую организует ЦВК «Экспоцентр» в Москве. На смотре будут представлены современные решения в области энергосбережения от отечественных и иностранных фирм, занимающихся данным видом деятельности.

Источник: http://www.elektro-expo.ru/ru/articles/2016/energosberezhenie-v-sistemah-goryachego-vodosnabzheniya-i-otopleniya/

ЭНЕРГОСБЕРЕГАЮЩИЕ МЕРОПРИЯТИЯ В ТЕПЛОПОТРЕБЛЯЮЩИХ УСТАНОВКАХ

Наиболее значительные потери тепла в системе теплоснабжения связаны с потерями в теплопотребляющих установках потребителей — в системах отопления и горячего водоснабжения.

В системах отопления потери связаны:

  • • с неравномерным распределением тепла по объекту и ошибками при проектировании системы (5—15%);
  • • отсутствием регулирования параметров теплоносителя и несоответствием характера отопления текущим погодным условиям (15-20%).

В системах горячего водоснабжения:


Бесплатная юридическая консультация:

  • • с отсутствием рециркуляции горячей воды (до 25%);
  • • отсутствием или неработоспособностью регуляторов горячей воды в системах ГВС (до 15%);
  • • внутренними утечками и загрязнением поверхностей теплообмена в подогревателях горячей воды (10—15%).

Системы отопления. К энергосберегающим мероприятиям в системах отопления, кроме указанных выше, относятся:

  • 1) снижение потерь тепла с инфильтрующим воздухом путем уплотнения оконных и дверных проемов, повышения качества заделки оконных блоков в проемах (экономия до 20%);
  • 2) снижение трансмиссионных потерь через оконные проемы путем установки штор из пленки ПВХ в межрамном пространстве окон и замены старых рам на стеклопакеты с двойным и тройным остеклением (экономия до 30%). Капитальные затраты на это мероприятие зависят от площади остекления здания, срока окупаемости и находятся в пределах от 0,1 до 1 года;
  • 3) утепление наружных ограждающих конструкций зданий (стен, полов и чердачных перекрытий или покрытий). После утепления можно получить экономию тепловой энергии 15—30%, улучшение теплового и воздушного режима чердачных помещений и технических подполий (подвалов);
  • 4) снижение теплопотребления за счет автоматизации систем отопления. Данное мероприятие позволяет экономить 8—25% тепловой энергии. Оно осуществляется путем установки на тепловых вводах в здания индивидуальных тепловых пунктов и оснащения всех радиаторов отопления термостатическими регуляторами температуры, а также за счет пофасадного регулирования и программного отпуска тепла. Как показывает практика, установка термостатических регуляторов позволяет экономить 50-60% тепла;
  • 5) организация приборного учета тепловой энергии путем установки на границах балансовой принадлежности тепловой сети узлов коммерческого учета расхода тепловой энергии. Сроки окупаемости находятся в пределах от 0,7 до 1,5 года при экономии тепла до 10% от годового потребления;
  • 6) наладка гидравлического режима систем отопления за счет установки шайб или балансировочных вентилей. Годовая экономия составит до 4% от годового отпуска тепла;
  • 7) применение систем лучистого и воздушного отопления (экономия до 5%);
  • 8) проведение разъяснительной работы с населением по утеплению и герметизации помещений, экономному потреблению горячей воды и электроэнергии путем использования средств массовой информации.

Максимальный эффект от применения автоматизации регулирования и учета теплопотребления в системах отопления может быть получен при условии полной реализации мероприятий по снижению энергопотребления здания.

Системы горячего водоснабжения. Основными причинами потерь воды и тепла являются нарушения гидравлического и теплового режима в городском водопроводе, тепловых сетях и в системах горячего водоснабжения.

Причины нарушений гидравлического режима:

  • • уменьшение давления воды в городском водопроводе ниже требуемого;
  • • увеличенное сопротивление водонагревательных установок;
  • • завышенные напоры циркуляционных насосов при установке их на циркуляционных трубопроводах квартальных сетей горячего водоснабжения;
  • • недогрев воды в водонагревательных установках, в результате которого повышается водоразбор, что приводит к увеличению потерь давления;
  • • нечеткое управление работой хозяйственных насосов и отсутствие надежных средств автоматического управления;
  • • неисправности запорной арматуры на трубопроводах системы горячего водоснабжения.

Причины нарушения теплового режима в системах горячего водоснабжения:


Бесплатная юридическая консультация:

  • • недогрев воды водонагревательными установками в результате уменьшения коэффициента теплопередачи из-за образования накипи либо понижения температуры сетевой воды ниже минимально допустимой, либо неправильного включения секций водонагревателя по греющей воде, либо неисправностей или некачественной наладки регуляторов температуры и расхода воды;
  • • гидравлическая разрегулировка систем горячего водоснабжения, которая вызывается пониженным сопротивлением секционных узлов системы или циркуляционных колец отдельных зданий;
  • • зарастание системы ГВС отложениями, которые можно отмыть при использовании комплексонов;
  • • потери воды вследствие утечек в разводящей системе.

Одна из основных проблем, мешающих эффективной работе систем ГВС, — образование отложений в бойлерах и системах циркуляции и подводки горячей воды к потребителю.

В системах горячего водоснабжения рекомендованы для внедрения следующие энергосберегающие мероприятия.

  • 1. Наладка систем горячего водоснабжения. Производится с целью обеспечения расчетных температур воды у водоразборных кранов всех абонентов и предотвращения потерь тепла и воды при сливе охлажденной воды в начале водоразбора. Она является одним из основных мероприятий, позволяющих устранить значительные потери тепла, достигающие 5% в квартальных системах горячего водоснабжения, для которых характерно неравномерное распределение циркулирующих расходов по системам отдельных зданий и секционным узлам и стоякам. Основой для наладки системы является принцип повышения сопротивления стояков и секционных узлов в циркуляционном режиме. Наладка и регулирование системы считается законченной, если отклонение температуры, циркулирующей в системе воды от расчетной во всех ответвлениях, стояках и циркуляционных узлах в циркуляционном режиме, не превышает ± 2 °С.
  • 2. Изоляция стояков, проложенных в каналах санитарно-технических кабин и подвалах. В стоимости горячей воды 90% приходится на стоимость тепловой энергии, а стоимость собственно самой воды составляет 10%. В связи с этим первостепенное внимание должно уделяться экономии тепловой энергии. Расходы тепловой энергии на циркуляцию, складывающиеся из потерь тепловой энергии изолированными магистралями, неизолированными стояками и расхода тепловой энергии на отопление ванных комнат, составляют 30— 40% расходов тепловой энергии на горячее водоснабжение. Расход тепловой энергии на отопление ванных комнат составляет 25% расхода тепловой энергии на циркуляцию, а остальные 75% — потери.

Потери тепловой энергии в системах горячего водоснабжения могут быть уменьшены при устройстве тепловой изоляции стояков в подвалах и технических каналах санитарно-технических кабин. Стояк, проложенный в техническом канале санитарно-технической кабины, изолируется полностью. Стояки, проложенные открыто в совмещенном санузле, изолировать нс рекомендуется.

3. Выключение циркуляционных насосов в летний период в ночное время. Циркуляция воды в системе горячего водоснабжения осуществляется с целью обеспечения требуемой температуры горячей воды во всех точках водоразбора. В жилых домах и объектах социальной сферы в ночное время расход воды практически отсутствует.

Экономия тепла, расходуемого на циркуляцию, может быть достигнута за счет выключения циркуляционных насосов в ночное время в теплый период года. При этом потребители могут пользоваться горячей водой. Выключение насосов приводит к значительной экономии тепла за счет уменьшения потерь тепловой энергии в большинстве стояков, в которых водоразбор отсутствует.


Бесплатная юридическая консультация:

Во избежание замораживания трубопроводной системы на чердаках выключать насосы рекомендуется только при температуре наружного воздуха выше 3 °С. Время включения и выключения циркуляционного насоса определяют для каждого ЦТП по времени окончания и начала фактического водоразбора. Включать насос следует примерно за час до начала водоразбора. В жилых кварталах, где проживает значительное количество людей, работающих посменно, т.е. имеет место значительное потребление воды в течение всей ночи, выключать циркуляционные насосы не рекомендуется.

4. Увеличение толщины тепловой изоляции трубопроводов. Значительные потери тепловой энергии в системах горячего водоснабжения возникают в результате отсутствия тепловой изоляции или недостаточной тепловой изоляции трубопроводов.

Конструкция и толщина изоляционного слоя тепловой изоляции определяются на основании технико-экономических расчетов исходя из стоимости материалов и затрат труда на теплоизоляционную конструкцию и стоимости тепловой энергии. В общем случае годовые расходы в эксплуатации будут складываться из стоимости тепловой изоляции, отнесенной к году эксплуатации, и потерь тепловой энергии. Для принятого типа изоляции по мере увеличения толщины теплоизоляционного слоя уменьшаются тепловые потери и, следовательно, расход топлива на выработку тепловой энергии, но одновременно возрастает стоимость тепловой изоляции. Наиболее экономичным будет вариант, когда суммарные годовые расходы на изоляцию и на потери тепловой энергии будут минимальными.

5. Совершенствование эксплуатации. Реализация мероприятий по совершенствованию эксплуатации системы горячего водоснабжения позволит уменьшить потери тепловой энергии и увеличить срок службы трубопровода. Одно из важных мероприятий этого направления — поддержание для систем централизованного горячего водоснабжения температуры горячей воды в местах водоразбора на уровне 50 °С (для закрытых систем теплоснабжения) и 55 °С (для открытых систем теплоснабжения). Повышение температуры воды в системе на 1 °С приводит к увеличению потерь тепловой энергии трубопроводами на 3% и усилению процесса внутренней коррозии трубопровода. Поддержание температуры на требуемом уровне достигается за счет установки регуляторов температуры у подогревателей горячего водоснабжения, постоянного контроля за их работой.

Необходимо провести ревизию существующих подогревателей горячей воды, при необходимости заменить их на высокоэффективные пластинчатые теплообменники.


Бесплатная юридическая консультация:

С целью экономии холодной воды и тепловой энергии, затрачиваемой на подогрев воды, требуется обеспечить рециркуляцию в системе Г ВС, а также эффективную работу регуляторов температуры в тепловом пункте.

Для выявления причин увеличения расхода воды, оперативной ликвидации утечек, неисправности водоразборной арматуры рекомендуется осуществлять контроль за расходом. Нерациональный расход горячей воды в системах горячего водоснабжения может быть значительно снижен при повышении уровня эксплуатации. Для уменьшения мгновенного расхода воды рекомендуется перед кранами устанавливать шайбы для гашения избыточного напора. Необходимо также осуществлять постоянный контроль за состоянием трубопроводов и тепловой изоляцией, своевременно проводить ремонт тепловой изоляции и устранять утечки воды в местах коррозионных повреждений трубопроводов. Для гашения избыточного давления, которое в результате приводит к нерациональному расходу, рекомендуется устанавливать регуляторы давления «после себя» на подающем трубопроводе за подогревателем горячего водоснабжения.

Экономия тепла и воды у потребителей может быть также достигнута за счет применения промывки и прочистки трубопроводов. На практике используются следующие виды:

  • • гидрохимическая промывка систем отопления;
  • • элекгрогидроимпульсная прочистка систем горячего и холодного водоснабжения;
  • • элекгрогидроимпульсная прочистка радиаторов отопления;
  • • гидрохимическая промывка и электрогидроимпульсная прочистка водоводяных подогревателей.

Системы вентиляции и кондиционирования. Механические системы вентиляции и кондиционирования потребляют значительную часть от общего потребления энергии. Очень часто системы работают с избыточной производительностью.

В системах вентиляции рекомендуются для внедрения следующие мероприятия:


Бесплатная юридическая консультация:

  • 1) систематическое обслуживание (в первую очередь очистка трубопроводов и оборудования);
  • 2) замена устаревших осветительных систем в кондиционируемых помещениях (экономия энергии на осветительной системе и установке кондиционирования воздуха);
  • 3) уменьшение времени открытия дверей и ворот. Создание закрытых переходных «камер» на дверях, применение пластиковых занавесов или иных устройств для уменьшения инфильтрации наружного воздуха;
  • 4) уменьшение утечек из воздуховодов;
  • 5) отключение вентиляторов в ночное время, на время пересменок и обеденных перерывов, когда не проводятся работы;
  • 6) применение автоматики управления системами в зависимости от температуры наружного воздуха;
  • 7) использование одной центральной системы, дополненной несколькими местными вытяжными устройствами. Использование местных вытяжных устройств позволяет уменьшить нагрузку на основную вентиляционную систему.

Для повышения эффективности системы вентиляции необходимо обращать внимание на следующие аспекты:

  • 1) потери на трение воздуха в воздухопроводах уменьшатся на 75% при увеличении внутреннего диаметра последних на 50%. Необходимо избегать скорости воздуха выше 10 м/с;
  • 2) в случае если производительность системы управляется путем дросселирования с помощью заслонки, то необходимо рассмотреть другие способы управления производительностью: несколько небольших, работающих в параллель (управление путем включения/выключения необходимого количества) вентиляторов, управление скоростью потока воздуха — непрерывно или дискретными ступенями;
  • 3) управлять производительностью вентиляторов эффективно можно путем изменения частоты их вращения, особенно когда системы длительное время работают с пониженной производительностью;
  • 4) если производительность постоянно высокая, то необходимо изменить передаточное число ременного привода вентиляторов.

Следует помнить о следующих правилах: удвоение скорости потока увеличит производительность в 2 раза, давление — в 4 раза, потребление энергии — в 8 раз;

  • 5) необходимо избегать потерь в системе из-за неправильной установки вентиляторов;
  • 6) нужно заменить те электродвигатели, которые нарабатывают большое количество часов в год, более энергоэффективными двигателями.

Потери электроэнергии в вентиляционной установке можно снизить изменением частоты вращения вала и угла установки лопаток на рабочем колесе, поворотом лопаток направляющего аппарата.

Производительность вентиляторов можно регулировать следующими способами:

  • • применением частотного регулирования скорости вращения электродвигателей вместо регулирования шиберами в напорной линии вентиляционной установки (экономия электроэнергии до 20-30%);
  • • регулированием подачи воздуходувок шиберами на всосе вместо регулирования на нагнетании (экономия электроэнергии до 15%).
  • • регулированием вытяжной вентиляции шиберами на рабочих местах вместо регулирования на нагнетании (экономия электроэнергии до 10%).

При монтаже, сборке и ремонте вентиляторных установок иногда допускаются отступления от проекта, что приводит к нерациональным расходам электроэнергии. К этим дефектам можно отнести:


Бесплатная юридическая консультация:

  • • работу осевого вентилятора с перевернутым колесом, при этом КПД вентиляторов снижается на 20—40%;
  • • увеличение зазора между рабочим колесом и всасывающим патрубком у центробежных вентиляторов, что также приводит к снижению КПД;
  • • снятие обтекателя перед входом в рабочее колесо (КПД снижается на 10%);
  • • укороченный диффузор или его отсутствие у осевых вентиляторов (КПД снижается на 6%);
  • • некачественное изготовление и монтаж отводов, тройников, колен, вмятины, плохая штукатурка каналов (значительно увеличивают сопротивление системы и соответственно расход электроэнергии).

Основными мероприятиями по экономии энергии в системах кондиционирования являются:

  • • включение кондиционера только тогда, когда это необходимо;
  • • исключение переохлаждения и перегрева воздуха в помещении;
  • • уменьшение до минимума уставки на охлаждение и нагревание воздуха;
  • • уменьшение количества свежего и отработанного воздуха в помещениях;
  • • поддержание в рабочем состоянии регуляторов, поверхностей теплообменников и оборудования;
  • • исключение просачивания воздуха из некондиционируемых помещений;
  • • уменьшение утечки в клапанах;
  • • минимизация количества воздуха, подводимого к помещению;
  • • использование регенерации энергии между потоками отработанного и свежего воздуха.

Все системы кондиционирования должны работать только тогда, когда в помещении находятся люди.

Источник: http://studref.com/330541/stroitelstvo/energosberegayuschie_meropriyatiya_teplopotreblyayuschih_ustanovkah

Водоснабжение и канализация

Энергосбережение в водоснабжении и канализации

Энергосбережение в водоснабжении и канализации напрямую зависит от мероприятий, позволяющих уменьшить потребление электроэнергии для забора воды, ее очистки, обработки, подачи и распределения.

Энергосберегающие мероприятия по затратам разделяют на беззатратные, мало-, средне- и высокозатратные.


Бесплатная юридическая консультация:

Беззатратные и малозатратные энергосберегающие мероприятия

К числу беззатратных и малозатратных мероприятий по энергосбережению в водоснабжении и канализации относят: 1. Соблюдение правил эксплуатации систем водоснабжения и канализации и применяемого в них оборудования. Эти правила предусматривают своевременное проведение планово-предупредительных ремонтов, замену набивки и подтяжку уплотнений насосов, вентилей и задвижек, замену неисправной арматуры, устранение утечек и т.д. 2. Замена асбестографитовых уплотнений насосов уплотнениями на основе тефлона, обеспечивающих увеличение срока эксплуатации в среднем в 6 раз. Затраты окупаются в течение не более 6 месяцев. 3. Замена арматуры устаревших типов на современную (в рукомойниках, раковинах, смесителях, в сливных бачках унитазов и т.п.).

Среднезатратные энергосберегающие мероприятия

Это мероприятия, затраты на проведение которых окупаются за 2-3 года. К ним относят:

Расскажем о каждом из перечисленных выше способов энергосбережения в водоснабжении и канализации подробнее.

1. Обеспечение экономичных режимов эксплуатации насосов. Для реализации энергосберегающих мероприятий по обеспечению экономичных режимов эксплуатации насосов рекомендуется следующее:

  • замена группы малопроизводительных насосов более производительными;
  • замена насоса, гидравлическая характеристика сети которого не соответствует его паспортным данным;
  • повышение КПД насосов до их паспортных значений путем установки новых уплотнений в сочетании с тщательной балансировкой рабочих колес;
  • замена агрегатов, передача вращающего момента на вал которых от вала двигателя осуществляется через редуктор или клиноременную передачу. Замена осуществляется на насосы, у которых рабочее колесо находится непосредственно на валу двигателя (в результате чего устраняются потери энергии в передаче);
  • осуществление автоматизированного управления работой насосного оборудования для достижения максимально возможной загрузки насосов,
  • регулирование производительности насосов изменением частоты вращения рабочего колеса с помощью частотно-регулируемого электропривода;
  • при отсутствии регулятора частоты регулирование производительности насосной установки или станции может выполняться не только с помощью дроссельных заслонок (задвижек или вентилей и т.п.), но и путем ступенчатого включения-выключения параллельно установленных насосов меньшей производительности;
  • в системах водоснабжения с насосными агрегатами, рассчитанными на максимальное потребление воды при максимальном напоре, целесообразно устанавливать емкости-накопители (аккумуляторы) воды на высоте требуемого напора с устройством автоматического отключения насосного агрегата при заполнении емкости водой.

2. Изменение диаметра трубопроводов, применение труб из полимерных материалов, принципиальное изменение схемы конструктивного исполнения систем водоснабжения и водоотведения. При увеличении диаметра трубы на 50% потери от трения жидкости можно уменьшить на 75%. Аналогичного результата при решении задач энергосбережения в водоснабжении удается добиться заменой труб из традиционных материалов на трубы из полимеров, отличающихся значительно меньшей шероховатостью. В результате такой замены срок службы сетей увеличивается с 3-10 до 30 лет и более. Кроме этого, гидравлическое сопротивление и затраты мощности на привод насосов при том же диаметре трубопровода и неизменном расходе воды снижаются примерно на 25 %.

3. Экономия электроэнергии и воды при переходе к оборотным системам водоснабжения. Переход от прямоточного к оборотному водоснабжению в системах охлаждения энергетического и технологического оборудования снижает потребление воды от внешних источников, а также нагрузку на насосное оборудование системы водозабора и очистные сооружения.

4. Борьба с отложениями в системах водоснабжения и водоотведения проводится как механическим, так и химическим способами и требует остановки сетей на ремонт. В настоящее время созданы и начали широко внедряться в системах отопления, горячего и оборотного водоснабжения дешевые автономные автоматизированные установки для обработки воды присадками типа «комплексонов», которые после добавления их в малых дозах (около 0,6 г/м3) в подпитывающую воду, не меняя жесткости воды, препятствуют образованию отложений.

5. Устранение утечек воды. Локализация мест этих утечек трудоемка и требует применения специальных акустических течеискателей, улавливающих звуковые колебания струй в местах повреждения системы. Эффективным средством выявления утечек является оснащение вводов в здания счетчиками холодной воды.

6. Организация учета водопотребления. Проводится во избежание неконтролируемых технологических потерь воды. С этой целью рекомендуется составить водный баланс предприятия, проанализировать схемы водопользования и расходы воды, экономически оптимизировать систему водопользования.

7. Диспетчеризация и АСУ в сочетании с применением частотно регулируемых электроприводов, позволяет значительно повысить энергосбережение в водоснабжении и канализации за счет оптимизации режимов эксплуатации систем и более оперативного, точного определения утечек.

8. Стимулирование заинтересованности населения и персонала предприятий в энергосберегающих мероприятиях по экономии воды и тепла. Оснащение квартир узлами учета, введение оплаты за воду и тепло по фактическому расходу будет способствовать большей заинтересованности в энерго- и теплосбережении.

9. Анализ режимов системы водоотвода сводится в основном к анализу режимов работы насосного оборудования станций перекачки и очистных сооружений.

10. Использования избыточной температуры стоков, химической энергии горючих веществ, загрязняющих стоки. Использования избыточной температуры стоков, химической энергии горючих веществ, загрязняющих стоки. Дополнительные резервы энергосбережения в системах водоотведения связаны с возможностью использования избыточной температуры стоков, химической энергии горючих веществ, загрязняющих стоки. Примером энергосберегающей технологии обезвреживания стоков может служить огневое обезвреживание сточных вод с высоким (порядка 50%) содержанием горючих веществ (спиртов, бензина, керосина, ацетона, масел и др.). Такие стоки фактически являются топливом, и обезвредить их можно, подавая в топки котлов.

Высокозатратные энергосберегающие мероприятия

1. Энергосберегающие мероприятия в электрохозяйстве систем водоснабжения и водоотведения связаны с внедрением автоматической системы контроля и учета энергопотребления (АСКУЭ) с последующим переходом с двухставочного тарифа оплаты электроэнергии на одноставочный.Ожидаемый эффект обеспечивается:

  • на первом этапе ее реализации — за счет снижения заявляемой мощности, что становится возможным вследствие более оперативного учета электропотребления;
  • на втором этапе — переходом на более выгодные одноставочные зонные тарифы, дифференцированные по времени суток (переход допускается только при наличии у предприятия АСКУЭ).

2. Основные резервы энергосбережения в системах горячего водоснабжения подразумевают:

  • замену секционных (кожухотрубчатых) водоподогревателей пластинчатыми, имеющими меньшие габаритные размеры и более низкие потери теплоты, а также упрощающими их обвязку трубопроводами. Это ведет к снижению затрат мощности насосов на циркуляцию греющей и нагреваемой воды в тепловом пункте;
  • оснащение циркуляционных и подпитывающих насосов в тепловых пунктах частотно-регулируемыми электроприводами (ЧРП), позволяющими изменять расход воды в системах, не прибегая к открытию или закрытию имеющихся задвижек или других дроссельных органов. Такие энергосберегающие мероприятия ведут к экономии 10÷30% электроэнергии;
  • оснащение вводов зданий подмешивающими насосами и балансировочными клапанами (типа «BALLOREX»), водосчетчиками, имеющими выходы для передачи информации в компьютерную сеть; создание на этой основе системы диспетчеризации потребления теплоты, холодной и горячей воды и переход к регулированию расхода тепловой энергии на горячее водоснабжение — по разбору горячей воды, к поддержанию давления воды в системах в пределах допустимых значений, снижению утечек воды вследствие разгерметизации систем при превышении допустимых давлений.

3. Строительство очистных сооружений, оборудованных утилизационным оборудованием. Экономическая эффективность определяется не только получением пара или воды для теплоснабжения, но и извлечением ряда веществ, используемых в дальнейшим в качестве вторичного сырья.

4. Значительные резервы энергосбережения имеются в оборотных системах водоснабжения, через которые сбрасывается в окружающую среду значительное количество теплоты энергоносителей на многих промышленных предприятиях. Проблема использования данного резерва с целью энергосбережения в водоснабжении принципиально решается с помощью тепловых насосов, которые дают возможность возврата теплоты в производственный цикл. Они нашли широкое применение в странах западной Европы, в США, Японии. В Украине их применение незначительно.

Источник: http://www.patriot-nrg.ua/rus/savings/view/72

Энергосбережение в системах горячего водоснабжения

Общие технические меры по энергосбережению в системах отопления (О), горячего водоснабжения (ГВС), вентиляции (В) и кондиционирования (КВ) можно сформулировать следующим образом:

1. Эффективная теплоизоляция трубопроводов, надежно и долговечно работающая при условиях эксплуатации.

2. Малое гидравлическое сопротивление трубопровода для транспортировки теплоносителя, что обеспечит малую мощность на прокачку теплоносителя.

3. Снижение тепловой нагрузки на системы О, В и КВ.

4. Выбор рационального вида систем О, В и КВ.

5. Осуществление экономичных режимов работы систем О, В и КВ.

6. Использование дополнительных источников энергии для систем О, В и КВ.

1. Эффективная теплоизоляция трубопроводов

Энергосбережение при транспортировке тепловой энергии в первую очередь зависит от качества тепловой изоляции. Она должна иметь не только низкую теплопроводность, воздухо- и водопроницаемость, а так же низкую электропроводность, что уменьшает электрохимическую коррозию материала трубы. Наличие влаги в теплоизоляции снижает эффективность её работы, способствует разрушению труб. Поэтому сами трубы имеют антикоррозионное покрытие, например, в виде силикатных эмалей, изола и др., а сверху тепловой изоляции укладывают специальные профилированные футляры (например, асбоцементные) или покрывают ее слоем обмазочной, либо оклеечной гидроизоляции. Такая гидроизоляция препятствует поступлению влаги из воздуха и грунта.

2. Малое гидравлическое сопротивление трубопровода

Известно, что потери давления и мощность затрачиваемая на прокачку теплоносителя зависит прежде всего от скорости, и следовательно от диаметра трубопровода. Необходимо отметить, что увеличение диаметра хотя и уменьшает мощность на прокачку теплоносителя, но при этом увеличивается металлоемкость конструкции и энергозатраты на производство и монтаж трубопровода и т.д. Поэтому увеличивая диаметр и уменьшая мощность, затрачиваемую на прокачку теплоносителя, вместо ожидаемой экономии энергозатрат можно получить их увеличение. Обычно скорости движения теплоносителей при их транспортировке по трубам в различных отраслях техники зависят от условий работы и рабочих параметров.

Энергосбережение за счет уменьшения мощности, затрачиваемой на прокачку теплоносителя, можно получить при использовании вместо стальных труб пластиковых (например, полипропиленовых) для которых коэффициент гидравлического трения составляет в среднем 0,007, что существенно ниже, чем для стальных труб.

3. Снижение тепловой нагрузки на системы отопления, вентиляции и кондиционирования

Архитектурно-планировочные меры. Форма здания влияет на величину теплопотерь. Наиболее выгодной является форма, при которой отношение площади наружной поверхности к объёму минимально. Такими являются здания в форме куба или шара.

Важной является высота здания. При сохранении объема здания увеличение его высоты в 4 раза (например, с 15 до 60 м.) приводит к двукратному увеличению годового расхода теплоты на отопление. На величину энергопотребления здания также влияет его ориентация (для зданий с вытянутыми фасадами). Ориентированные на южную половину горизонта фасады получают достаточно большие поступления солнечной радиации, которые особенно ощутимы в начале и в конце отопительного периода.

Теплозащита зданий. Задача выбора теплозащиты стен и перекрытий – технико-экономическая. Усиление теплозащиты стен достигается увеличением толщины теплоизоляционного слоя в её конструкции (для современных многослойных конструкций) или самой конструкции (для однослойных). При увеличении толщины стены возрастает её стоимость, но сокращается тепловая нагрузка на систему отопления и стоимость потребления тепловой энергии.

Совмещение функций ограждений и систем. Наиболее простым способом снижения тепловой нагрузки на системы отопления, вентиляции и кондиционирования воздуха в жилых зданиях является остекление лоджий. Эффективным способом снижения тепловой нагрузки в системах отопления, вентиляции и кондиционирования воздуха в промышленных и общественных зданиях служит удаление вытяжного воздуха через межстекольное пространство окон.

4. Осуществление экономичных режимов работы систем отопления, вентиляции и кондиционирования

Дежурное отопление (снижение температуры воздуха в помещении в нерабочие часы. Пригодно только для производственных и общественных зданий. Для жилых помещений оно не применимо, так как люди в них могут находятся постоянно, а снижение температуры ниже +18 0С недопустимо)

Снижение расхода воздуха с учётом санитарных норм. (Использование периодической вентиляции.) Принцип действия периодической вентиляции основан на том, что при вентилировании помещения свежим воздухом концентрация вредности (например, углекислого газа в общественном помещении) убывает быстро (по экспоненциальному закону), а при бездействии вентиляции повышение концентрации вредности в воздухе помещения протекает медленнее (по линейному закону).

5. Использование дополнительных источников энергии для систем отопления, вентиляции и кондиционирования

Применение тепловых насосов. Энергосбережение достигается за счет утилизации низкотемпературной сбросной или природной теплоты.

Утилизация теплоты сбросного воздуха. Для утилизации теплоты выбросного воздуха используются утилизаторы различных видов, имеющих разную эффективность. Наиболее высокой эффективностью обладают регенеративные теплообменники с вращающейся насадкой. Энергосбережение достигается за счет передачи теплоты от вытяжного воздуха к приточному.

6. Использование теплоты солнечной радиации

Прямое использование солнечной радиации сулит существенные выгоды. Солнечная радиация обладает экологической чистотой, доступностью. Однако прямое использование тепла солнца затруднено из-за относительной сложности поглощения и трансформации, а также из-за несовпадения во времени прихода и потребления энергии.

7. Применение инфракрасных излучателей

Для обогрева постоянных и непостоянных рабочих мест в производственных и вспомогательных помещениях; помещений и площадок гражданского назначения; помещений и конструкций в процессе строительства зданий и сооружений; систем снеготаяния на открытых и полуоткрытых площадках, на кровлях зданий и сооружений возможно применение инфракрасных излучателей (газовых или электрических). Энергосбережение достигается за счет уменьшения отапливаемого объема помещения, отсутствия перегрева верхней зоны помещения, малой тепловой инерции и гибкости управления.

Источник: http://studopedia.org/.html